
/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

U42
Token
White Paper
Version 1.0
April 23, 2018

Cover

U42 Token:
White Paper

©2018 You42 Inc. All rights reserved.

01/ u42.io / info@u42.io / Version 1.0

02/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Value Proposition ... 05

U42 Token ... 06

Company History ... 08

Product ... 09
Overview ... 09
Commerce .. 10
Partnerships .. 11
Platform Launch .. 12
Marketing .. 13
Service Architecture .. 14

U42 Token Overview .. 15
Token Structure ... 15
Token Launch Summary .. 15
Token Distribution .. 15
ICO Allocation ... 16
Network Operations Fund ... 16
You42 Platform Operations .. 16
Supply & Logic .. 17
Legal Disclaimer .. 18

Abstract .. 21

Summary of Use .. 22

Intended Purpose & Core Design Factors ... 23

Table of Contents

U42 Token:
White Paper

03/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Token Technology & Features .. 24
Use of ERC-20 .. 24
Opt-in Structure .. 25
Applications .. 26
Services .. 27
 Credits .. 28
 Simple Services .. 29
Obtaining Listed Service Information ... 30
Provisions ... 31
 Provision Updates & Completion .. 31
 Automated Refunds .. 32
Linked Transfers .. 33
Application References ... 34
Delegated Security Model ... 35
	 Role-specific	Addresses ... 35
 Extending the Security Model ... 36
Extending Funds & Transfer Receipt with Smart Contracts 36
 Extending Receipt Addresses .. 37
 Extending User Transfers.. 38
Use of Logged Events ... 39
Protection Against Erroneous Transfers .. 40

Examples of Use .. 41
Multiple Service Use – You42 Platform .. 41
Provision Updated Services & Linked Transfer .. 42
Dynamic Service Availability .. 43
Simple Services .. 44
Multiple Applications ... 45
Integrating Smart Contracts with Application Services (for Content Creators) 46
Making Features Available Exclusively to Token Holders ... 47

Token Application Development .. 48
Application Development Summary .. 48
Structure of a U42 Token Application .. 49
Testing Applications with the U42 Token .. 50

Appendix A: U42 Token Specification ... 51

Table of Contents

U42 Token:
White Paper

04/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Applications and addresses... 52
Application Address .. 52
Receipt Address ... 52
Update Address .. 52

Methods .. 53

Events .. 66

Token Deployment Parameters ... 69
Development & test .. 69
Public Test ... 69
Main Network .. 69

Definitions .. 70

Table of Contents

U42 Token:
White Paper

05/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The entertainment industry is fractured. In its analog state, it works in favor of large
production houses who are simply masking the reality that they are becoming
obsolete.	To	reach	audiences,	artists	expend	more	effort	jumping	through	the	hoops	
these houses set up than they do creating content. More often than not, their content
is never heard or seen because of the red tape holding them back.

You42 seeks to eliminate this problem by removing the middleman from the equation;
no longer is a studio or label needed to bridge the gap between an artist and the
audience. You42 is a revolutionary social entertainment platform putting artists and
fans in control like never before, enabling new levels of discoverability and success.
The platform serves as a venue for distribution, content creation, collaboration, and
consumption. You42 brings content creators and consumers together, giving creators
a new avenue for monetization, and providing rewards and incentives for users. Users
can interact through social, music, video, gaming, and more, bringing together a
variety of consumers.

Value Proposition

U42 Token:
White Paper

06/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The Token Revolutionizing Entertainment
Blockchain	technology	affords	You42	a	method	of	decentralized	control	which	is	core	
to our vision. By implementing a token economy, You42 will start to decrease the need
for third-party merchant services and puts creators in the driver’s seat.

The U42 token serves as the economic layer for You42’s marketplaces to commercially
incentivize participation, discovery and curation. Initially, U42 tokens will be activated in
the network by content creators and brands in order to promote content.

Ready Product
• Tokens distributed at the close of the ICO, usable immediately
• Established company background
• 10 years of business history
• Future-proof token economy

U42 Token

U42 Token:
White Paper

07/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Using	U42	tokens,	there	are	a	number	of	different	ways	for	users,	creators	and	brands	
to interact with the platform, such as:

•		A	film	director	is	launching	his	new	feature,	“Dead	by	Midnight,”	and	wants	to	drive	
views	of	the	film	across	You42.com.	Using	our	integrated	advertising	network	and	pre-
purchased U42 Tokens, the director can purchase targeted advertising placements
directed at his core demographic on the You42 platform.

•		A	user	who	sees	“Dead	by	Midnight”	and	thinks	this	is	one	of	the	top	10	horror	films	
of	all	time	can	use	U42	Tokens	to	purchase	our	in-app	currency	and	“tip”	the	director	
for producing such a terrifying experience.

•		A	top	makeup	brand	that	specializes	 in	special	effects	and	Halloween	accessories	
wants	to	target	viewers	of	“Dead	by	Midnight”	and	selects	the	film	to	advertise	their	
brand - again purchasing advertising placements using the U42 Token.

Token Use Cases

U42 Token:
White Paper

08/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Founded in 2006 under the name Kiz Toys, You42’s initial mission was to develop
original digital content that accompanied toys, video games and animation properties
based on original, cohesive storylines and IP.

With the advent of free-to-play mobile games, we changed our approach to focus solely
on the creation and distribution of interactive entertainment with mobile games. In 2014,
You42’s founders conceived an entertainment product that would bring together games,
music, video, news and more, all contained within a shared social space.

In the process of developing this platform, we recognized that we were building an
ideal environment for the use of an encrypted token. In 2017, we began planning the
campaign	for	our	initial	coin	offering.	Working	with	legal	and	accounting	advisors,	the	
U42 Tokens will be sold to the public in 2018. Funds collected through the ICO will be
used to promote, launch and maintain the You42 platform.

Company History

U42 Token:
White Paper

09/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

You42 is a social, lifestyle and entertainment platform, focused on the distribution
of multiple verticals of entertainment and open access content. Unlike other social
platforms, You42 allows users to curate their experiences based on their interests and
rewards them for listening to, watching, commenting on and/or sharing content with
both tokens and experience points.

While You42 creates a better experience for content consumers, we also help develop
the relationship creators have with their audiences. Artists can leverage their digital
content to boost monetization, discovery and engagement with fans. By giving content
creators a tool to reach their fans across multiple forms of mixed media, we believe this
will result in greater loyalty and increased creator revenues.

However, improved engagement isn’t the only way we help content creators. Discovery
and distribution of content to new consumers is equally important. You42 provides
an avenue for content creators to reach new consumers directly. Our platform boasts
discoverability	at	its	core	by	bringing	consumers	from	different	media—such	as	gaming	
and	music—and	allows	them	to	experience	content	in	new	collaborative	and	creative	
ways. As an example, fans of a You42 trending music artist may cross over into the
audience from a game also on You42 when they learn the artist contributed to the
game’s soundtrack.

Since one of our biggest goals is to foster better connections between content creators
and their audiences, we want You42 to be accessible to users, no matter where they
are or what content they love to consume. That’s why building You42.com in HTML5 is
central to our philosophy, ensuring that it will work seamlessly across all desktop, tablet
and mobile browsers, providing users with the best possible experience based on their
device type.

Product Overview

U42 Token:
White Paper

10/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

You42	will	offer	content	owners	and	creators	dynamic	commerce	capabilities,	allowing	
them	to	upload,	distribute,	stream	and	sell	their	content	via	their	profile/pages.	Essentially,	
users will be given the tools to create a personalized marketplace for their digital content.
You42’s commerce functionality will enable sellers to introduce new products, services
and brands while engaging with and rewarding fans for their interaction.

Commerce

U42 Token:
White Paper

11/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

You42 has partnered with the following content providers:

Earbits
earbits.com
Earbits was designed with one goal in mind: to make it simple for artists and music
lovers	to	find	each	other	and	create	meaningful	connections.	Earbits	will	stream	music	
built by musicians and music lovers for musicians and music lovers.

Earbits is an online, commercial-free, independent music-streaming service. The
Earbits service does not ingest any fees for the consumption of content, and all content
is submitted by the owner with the intent of promotion.

MediaNet
mndigital.com
MediaNet	has	been	working	for	over	a	decade	with	the	world’s	 leading	major	 labels	
and thousands of independent labels to provide access to some of the most extensive
music catalogs covering multiple content distribution territories. MediaNet will provide a
portion	of	the	fulfillment	for	the	You42	Radio	module/offering.	

Digital Game Publishers
We have partnered with a number of video game publishers to (initially) bring their
mobile games (iOS and Android) to the platform along with several HTML5 games via
browser publishers.

We intend to also monetize the HTML5 games via our own API payment layer and
deliver Android games via our own store. This will then be extended to digital PC games.

Partnerships

U42 Token:
White Paper

12/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

You42	will	launch	content	across	video,	music	and	games;	offering	a	multitude	in	diverse	
engagement opportunities.

Content creators can use You42’s social hub to reward their fans, giving them exclusive
or early access to new and original content. Creators can share photos, videos, live
feeds and messages directly to their fan base and monetize/commercialize them through
macro- and micro-transactions, advertising and social engagement. Users can engage
in a 360-degree, multi-vertical media consumption experience which rewards them for
their activities within the platform.

Product Launch

U42 Token:
White Paper

13/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

You42.com is launching in 2018. Our preliminary marketing push will be through our
existing database of beta signups and our community of gamers. As we progress, we
will be opening our beta program across the United States, running local and national
campaigns such as the following:

• Localized marketing around key cities and metropolitan areas. The marketing
campaigns will begin in Atlanta and then move out to New York, San Francisco,
Los Angeles, Seattle, etc. We will have on-the-ground street teams running local ad
campaigns while also organizing mini-festivals and gigs.

• A comprehensive PR push through mainstream and dedicated entertainment and
technology	press	and	influencers.	

Marketing

U42 Token:
White Paper

14/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Core Technologies
The You42 application runs on a server operating on a LEMP stack.

The core of You42 is built using the Laravel framework. In addition to being robust
enough	 to	handle	such	a	 large-scale	application,	 this	 framework	offers	a	number	of	
services that we have integrated to suit the application’s needs

Delivery to End Users
As a web-based application, You42 is delivered to end users via web browsers.

Client Player Technologies
The You42 web application allows logged-in users to play audio and video media in
their browsers.

Service Architecture

U42 Token:
White Paper

15/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Token Launch Summary
Numbers	are	subject	to	change	with	ETH/USD	exchange	rates	and	volatility,	but	the	
following	are	best	effort	estimates	as	of	April	18,	2018:

• Exchange rate
 • 1 ETH = 1,031 U42 (1U42= 0.0009699321048 ETH)
• Presale to accredited investors: 04.23.18
• Public sale: 07.02.18

Token Distribution
• Lifetime Tokens Available: 525 million (no new U42 Tokens will ever be created)
• ICO: 315 million U42 Tokens (60% of total supply)
• Network Operations Fund: 157.5 million U42 Tokens (30% of total supply)
• You42 Platform Operations & Maintenance: 52.5 million U42 Tokens (10% of total supply)

U42 Token Overview

U42 Token:
White Paper

16/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

ICO Budget Allocation (315M Tokens)
All funds will be used to fully launch and sustain the You42 platform.

• Market Expansion 79.5%
 Funds will be used to support an internal team of developers that launch, maintain
and scale the You42 platform, license professional and semiprofessional digital
entertainment content (music, video, games, etc.), and support operational activities
that will contribute to the platform’s mission. Further, resources allocated to marketing/
PR of the platform will focus on continuing to build the You42 brand and executing a
competitive user acquisition campaign to grow the network and user base.

• Administration/Operations 20.5%
 Legal, security, accounting, and other administrative and operational costs associated
with the launch of the U42 Token and You42 platform. Some of these costs include debts
accrued during the development of the You42 platform prior to the launch of the U42
Token.

Network Operations Fund (157.5M Tokens)
Perhaps one of the most important token funds, this reserve allows You42 to incentivize
and attract both creator talent and advertising partners to the initial stage of the platform.
Primarily, this fund will be used to run accelerator programs for highly desirable content
creators to provide media for the platform. This, in turn, will encourage users and
advertisers to engage with the You42 platform.

You42 Platform Operations (52.5M Tokens)
These tokens will be retained by You42 and dispersed as needed to support the
functionality of the platform, engage new partners, and provide quality and unique content
to You42 users on an ongoing basis. Further, a portion of these tokens will be allocated to
founders, advisors, and employees.

U42 Token Overview

U42 Token:
White Paper

17/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Supply & Logic
The total U42 Token supply is based on reasonable and marketable limits for the
ICO as well as a sustainable utility token-driven economy that meets anticipated
platform demand.

Total supply = 525,000,000 U42 Tokens
• Public Sale 1 15% Bonus
• Public Sale 2 10% Bonus
• Public Sale 3 5% Bonus
• Public Sale 4 0% Bonus

ICO Presale
The ICO pre-sale structure is to accredited investors only in advance of the public sale.

ICO Public Sale
To reward early participants in the You42 network, the public sale phase utilizes bonus
purchase percentages based on ICO targets for raising USD through supported
cryptocurrencies. As a target is reached, the next public sale phase with a lower bonus
percentage is initiated.

ICO Token Burn
There will be a token burn after the public sale phase of the ICO closes. There are a total
of 315,000,000 tokens allocated to the ICO; anything ‘Not Sold’ after the close of the
public sale will be burned from the public sale allocation.
*All	detailed	numbers	included	in	the	whitepaper	draft	are	subject	to	change.

U42 Token Overview

U42 Token:
White Paper

18/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The purpose of this White Paper is to present You42, a social, lifestyle and entertainment
platform,	to	potential	community	members	who	join	the	You42	community	in	connection	
with the proposed U42 Token launch and crowdsale.

The information set forth in this White Paper is not exhaustive and does not imply
any elements of a contractual relationship. Its sole purpose is to provide relevant
and reasonable information to potential token holders in order for them to determine
whether to undertake a thorough analysis of You42 with the intent of acquiring U42
Tokens. Any agreement(s) between You42 or any of its subsidiaries and you to purchase
U42 Tokens are to be governed by a separate token sale document. In the event of any
inconsistency between this White Paper and the token sale document, the token sale
document shall prevail.

Nothing in this White Paper shall be deemed to constitute a prospectus of any sort of a
solicitation	for	investment,	nor	does	it,	in	any	way,	pertain	to	an	offering	or	a	solicitation	
of	an	offer	to	buy	any	securities	in	any	jurisdiction.	The	White	Paper	is	not	composed	in	
accordance	with,	and	is	not	subject	to,	laws	or	regulations	of	any	jurisdiction	that	are	
designed to protect investors.

The	 information,	statements,	estimates,	projections	and	opinions	 in	 this	White	Paper	
regarding	the	projected	terms	and	performance	of	 the	You42	platform,	are	selective	
and	subject	to	updating,	expansion,	revision,	independent	verification	and	amendment;	
provided,	however,	 that	none	of	You42	or	any	of	 its	affiliates	hereby	undertakes	any	
obligation to provide updates to the information contained herein. As such, neither
You42	nor	any	of	its	affiliates	is	making	any	representation	or	warranty	or	undertaking,	
including those in relation to the truth, accuracy and completeness of any of the
information set out in this White Paper.

None	of	the	contents	of	this	White	Paper	constitutes	legal,	financial,	tax	or	other	advice	
and we encourage you to consult with the relevant professional advisors independently.

The regulatory status of cryptographic tokens, including any cryptocurrency, digital
assets	and	blockchain	 technology	 is	unclear	or	unsettled	 in	many	 jurisdictions.	The	
publication and dissemination of this White Paper do not imply that any relevant laws,
regulations and rules have been complied with. No regulatory authority has examined or
approved this White Paper. Where any relevant governmental authority makes changes
to	existing	laws,	regulations	and/or	rules,	it	may	have	a	material	adverse	effect	and/or	
impair the ability of the You42 platform to function as intended, or at all.

Disclaimer

U42 Token:
White Paper

19/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

This White Paper is for general information purposes only and is not an advertisement.
Distribution of this White Paper may be restricted or prohibited by law or regulatory
authority	in	your	jurisdiction.	Recipients	should	inform	themselves	of	and	comply	with	
all	such	restrictions	or	prohibitions	and	neither	You42	nor	any	of	its	affiliates	accept	any	
liability to any person in relation thereto.

Jurisdiction & Participation Restrictions
The U42 Tokens shall not be sold to any person that is, or is purchasing on behalf of, a
citizen or resident of, or a person located in or with a primary residence or domicile in,
the	People’s	Republic	of	China,	the	Republic	of	Korea	or	any	other	country	or	jurisdiction	
in which access to or use of cryptocurrencies and/or digital tokens is prohibited by law,
decree, regulation, treaty or administrative act.

You42 may take all necessary and appropriate actions, in its sole discretion, including
referral of information to the appropriate authorities, to invalidate any purchases of U42
Tokens in violation of these restrictions.

Disclaimer

U42 Token:
White Paper

/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

U42
Token
Technical
White Paper
Version 1.0
April 23, 2018

Section

©2018 You42 Inc. All rights reserved.

20/ u42.io / info@u42.io / Version 1.0

U42 Token:
Technical White Paper

21/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The U42 Token is a decentralized utility token intended to provide a foundation for
content creators, platforms and consumers to build on for a variety of interactions. The
U42 Token uses a services model implemented as a smart contract that extends the
ERC-20 Ethereum token standard.

This document describes the features of the U42 Token and includes the full
specification	of	the	token	as	an	appendix.	Potential	and	actual	uses	of	the	token	are	
explored,	features	of	the	specification	are	described	and	deployment	and	development	
information is presented for application implementers.

The examples of use found in this document describe features included in the You42
platform as well as potential uses by other application implementers working with the
U42 Token.

In addition to providing a foundation for content platforms and applications, the U42
Token	 offers	 a	 variety	 of	 benefits	 to	 application	 implementers.	 The	 opt-in	 structure	
and service listing approach of the token allow for it to be integrated in a variety of
platform and application types. Provisioning and linked transfer features allow for deep
integration	in	fully	decentralized	applications.	The	smart	contract	compatibility	offered	
by the token, particularly in relation to the delegated security and token receipt address
mechanisms,	allow	for	the	token	to	be	used	and	extended	in	many	different	scenarios.

Abstract

U42 Token:
Technical White Paper

22/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Diagram 1: Simple usage example for the U42 Token

In this example an Application makes an advertising service available to users who can
place	advertisements	on	the	profile	pages	of	other	content-creating	users.	Users	who	
display advertisements are paid in tokens, which can be used to purchase services.

1 Application makes a service available

2 A content-creating user of that application pays for that advertising service with
U42 Tokens

3 The service is provisioned and advertisements are shown

4 The application tracks which users displayed advertisements for that provisioned
service and remunerates them with U42 Tokens

5 		A	 different	 content-creating	 user	 (user	 2)	 receives	 tokens	 and	 can	 use	 them	 to	
purchase their own services

See	section	“Examples	of	Use”	for	expanded	versions	of	the	above	diagram	incorporating	
other features of the token.

Summary of Use

U42 Token:
Technical White Paper

23/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The U42 Token is intended to provide functionality for both application implementers and
content creator users, where the content creator has a variable role in the provisioned
application services – e.g., where they can be both service consumer (when purchasing
advertisements	to	promote	their	content)	and	service	beneficiary	 (where	they	benefit	
from showing advertisements for other content-creating users and services). Content
creators can be individual artists and directors, groups of artists, brands and other
collaborative, individual or commercial entities that publish creative content.

Furthermore, the U42 Token is designed to meet the requirements of application
implementers	that	offer	variable	and	dynamic	services,	where	the	availability	and	dynamic	
nature of the services is a factor in how (and when) content creators use those services.

The U42 Token has been designed to provide a core means by which multiple platforms,
application types, content creators, brands and other users can interact to provide,
consume	and	benefit	from	services	based	on	their	respective	needs	at	any	time.

In order to provide the general purpose utility required by applications, platforms and
content	creators,	the	U42	Token	has	been	created	with	a	flexible	structure	around	a	
standards-compatible (Ethereum ERC-20) core.

Intended Purpose &
Core Design Factors

U42 Token:
Technical White Paper

24/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The	 token	 specifications	 in	 Appendix	 A	 provide	 a	 full	 description	 of	 a	 set	 of	 smart	
contract methods to provide the features of the U42 Token using the Solidity (̂ 0.4)
smart contract language, intended to be deployed on the Ethereum main network (see
sections	 “Token	 Application	 Development”	 and	 “Testing	 Applications	 with	 the	 U42	
Token”	for	details	of	test	network	facilities).

Use of ERC-20
The U42 Token is an Ethereum ERC-20-compatible smart contract made available on
both the Ethereum main network (for production applications) and a test network for the
purposes of application testing and development.

The standard ERC-20 methods have been implemented as part of the U42 Token
specification	(see		section	“Token	Specification”)	and	offer	compatibility	with	other	ERC-
20-compatible tools.

By using a standard smart contract interface on the leading smart contract platform
(Ethereum), the U42 Token is both versatile and extensible. As detailed in this document,
it’s possible for application implementers and content creators to extend the utility of
the U42 Token by interfacing using both standard ERC-20-compatible wallets and other
smart contracts deployed to the Ethereum network.

Users (including application operators, content creators and other application users)
will need to use an ERC-20 compatible wallet to hold their U42 Tokens. Users should
not use exchange-hosted wallets to receive U42 Tokens.

Due to the nature of the ERC-20 token standard, method calls on the smart contract
need	to	be	paid	(the	“gas”	required	to	execute	the	method	needs	to	be	paid)	for	in	Ether.	
It is expected that all users will maintain a balance of Ether for this purpose. ERC-865
may provide an alternative to this at a future time.

Token Technology
& Features

U42 Token:
Technical White Paper

25/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The U42 Token provides a set of methods for interacting with the token. It is not required
that an application implementer uses all of these methods, or that they use them in a
specific	manner.	The	examples	section	of	this	document	provides	a	set	of	typical	use	
cases, but more combinations are possible. Common groupings of uses would include:

• Applications that make services available for a U42 Token fee and credit users of the
application with a portion of those tokens

• Applications that provide dynamic services with variable rates, based on updated and
published token/credit rates

• Applications that provide an interface between service users (e.g., advertisers) and
service providers (e.g., content creators that will show advertisements) where there is
no requirement for a direct relationship between user and provider

• Content creators that purchase services to promote their content and receive payment
in tokens for promoting the content of other users

• Content creators that do not use U42 Token-based services but do provide a content
platform for other users

• Users that are not content creators but wish to participate in the use of commercial
services (e.g., brand advertisers) or consumer services (e.g., the consumption of content)

The	 examples	 above	 are	 provided	 by	 a	 mix	 of	 different	 methods	 of	 the	 token,	 as	
described	 in	 full	 in	 the	 token	 specifications	 in	 Appendix	 A.	 The	 rest	 of	 this	 section	
describes that core token functionality.

Opt-In Structure

U42 Token:
Technical White Paper

26/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Applications act as a conduit for U42 Tokens by making services available to token
holders and dispersing tokens to users who provide utility to the application. Examples
of this include:

• Platforms for the publication, delivery and consumption of entertainment media (content)

• Services that integrate with other platforms indirectly (e.g., advertising services that
are built with U42 Tokens but displayed on generic platforms)

• Services that are provided to or between content creators (e.g., services used as part
of the content creation process)

An application exists by virtue of an application address – an Ethereum address –
from which the application operator can make available services and update services
based on availability. They can also optionally choose to report information back to the
underlying blockchain about service use and payments of tokens to users.

A	single	commercial	entity	or	platform	can	operate	many	different	application	addresses	
and may choose to do so as a means to group services or for operational management.

It is expected that applications that provide services that are in part served by content-
creating users will maintain a list of wallet addresses for those users, so such that when
a content creator or other user is due to receive compensation for its contributions to
a service (e.g., by displaying advertisements alongside their content), they can receive
payment in an automated fashion.

Applications

U42 Token:
Technical White Paper

27/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

A service is made available by an application though the listService method of the token
smart contract. It includes information about the service (a description), details about
how that service can be updated and limits on its consumption (e.g., by specifying a
credit rate – see below – and a maximum purchasable volume).

Consumption of services by users is built as a layer on top of the underlying ERC-20
transfer method. When required, a user sends tokens to the transferToService method
indicating which service they wish to consume. This process creates a provision (see
section	“Provisions”)	for	that	service	and	would	be	reflected	in	the	application	in	a	way	
that	was	associated	with	its	description	(e.g.,	a	service	described	as	“display	advertising:	
similar	 artists”	 would	 provide	 an	 advertising	 service	 available	 to	 the	 user	 inside	 of	
that application).

Services	can	be	of	different	types	with	different	internal	mechanics.	An	application	may	
choose	to	independently	publish	information	about	the	different	types	of	services	that	it	
provides.	Application	implementers	may	choose	to	use	different	application	identifiers	
(application	addresses)	for	the	purpose	of	grouping	different	types	of	services.

The association of service consumption (e.g., through provision) with applications is
up to the application implementer, but could be via monitoring the transferToService
method	(via	 its	events)	or	by	 looking	for	a	specific	application	reference	(see	section	
“Application	References”).

When a new service is listed by an application a NewService event is created for that
application address. This can be monitored by other applications, e.g., for the purpose
of service discovery or the automated publishing of information about services.

Service	information	can	be	updated	by	the	application,	or	by	a	designated	set	of	“Update	
Addresses”	(see	section	“Delegated	Security	Model”),	e.g.,	to	change	the	description	of	a	
service, its cost in tokens or the maximum amount of that service available for purchase.

An application can choose to specify an alternate receipt address (the default is the
application address itself), to which U42 Tokens will be sent when users purchase
services via transferToService. In addition to providing increased operational security
(see	 section	 “Delegated	 Security	 Model”)	 this	 allows	 application	 implementers	 to	
extend the U42 Token smart contract with their own smart contract functionality, e.g.,
by	publishing	a	smart	contract	to	the	service	receipt	address.	See	section	“Extending	
Receipt	Addresses”	for	more	information.

Services	are	created	using	a	numeric	 identifier	 that	 is	unique	 to	 the	application	 that	
listed	it.	Service	identifiers	are	shared	across	regular	and	simple	services	(see	section	
“Simple	Services”).	The	identifiers	of	services	that	are	removed	(no	longer	available	for	
use) can not be re-used.

Services

U42 Token:
Technical White Paper

28/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Credits are an abstract concept that can be used by application services to create a
total service value based on a known quantity. In addition to providing a volume-based
service request, credits can be used by applications to indicate partial or full completion
of a service (via updating a provision).

The	meaning	of	a	credit	is	specific	to	each	service,	and	applications	are	expected	to	
only use credits for services that have a volume-based provision requirement.

Credits have no special meaning within the stored data of the smart contract. Updating a
provision with a remaining credit amount does not check previous credit update values.

Credits

U42 Token:
Technical White Paper

29/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The U42 Token provides a mechanism for applications to publish services that do not use
the Credits concept and do not require completion at a later stage – i.e., services that are
considered to be consumed on use. The listSimpleService and transferToSimpleService
are lightweight alternatives to the listService and transferToService methods, designed to
provide	a	cost-effective	(e.g.,	in	gas	terms)	interface	for	the	listing	and,	most	importantly,	
consumption of services.

Note	that	simple	services	share	service	identifiers	with	regular	services	for	the	same	
application.

Simple	 services	 do	 not	 create	 a	 provision	 identifier	 and	 immediately	 log	 a	
CompleteSimpleProvision along with the Transfer event.

Applications can choose to implement simple-like services – i.e., those that do not use
credits and don’t report progress or completion – by using a regular service and setting
the maximum permitted credit amount of the service to 1. Creating a simple service in
this	manner	will	result	in	a	slightly	less	cost-effective	method	call	when	users	come	to	
use the service via transferForService.

Simple Services

U42 Token:
Technical White Paper

30/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Interested parties (i.e., users and other applications) can obtain information about the
services of an application from the getServicesForApplication method. In addition, the
getServiceInformation	method	provides	a	full	set	of	service	 information	for	a	specific	
service. The U42 Token smart contract itself does not provide any hierarchy or structure
to the available services of an application, though an application could choose to embed
such	information	in	the	service	description	field	of	the	listed	service.

As the listService and listSimpleService methods publish NewService and
NewSimpleService events it is also possible to monitor the network for newly
published services.

Services that have been removed from an application can be discovered using the
getRemovedServicesForApplication method or by monitoring the ServiceRemoved event.

The U42 Token smart contract does not provide a direct means to identify new applications,
though the NewService event could be monitored for new application addresses (the
first	time	an	address	lists	a	service	is	effectively	the	creation	of	an	application).

Obtaining Listed
Service Information

U42 Token:
Technical White Paper

31/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

When a service (other than a simple service) is acquired by a user, the U42 Token smart
contract creates an associated Provision. This provision can be used to further update
the smart contract with service progress and completion.

The use and update of provisions is optional, but all calls to the transferToService
method	return	a	provision	identifier	should	it	be	required.	Provision	identifiers	are	unique	
to a particular service.

Provision Updates and Completion
For applications that wish to provide a public update of progress, an updateProvision
method is provided by the U42 Token smart contract.

Note that the amount of credits remaining in the provision (as supplied to the
updateProvision method) is not validated by the U42 Token smart contract, though
applications can use the getProvisionCreditsRemaining method to query the last value
that was passed to the updateProvision method.

Provision updates create UpdateProvision events, so can be used to publicly track the
status of a provisioned service.

Completed provisions (e.g., an instance of a service that has been completed/provided
by the application) can be indicated as such with the completeProvision method on the
U42 Token smart contract. This has similar properties to updating a provision, in that it
allows for the public tracking of the status of a provisioned service.

The	 updating	 and	 completion	 of	 provisions	 is	 optional,	 and	 the	 provision	 identifier	
provided by acquiring a service can be ignored if not required.

Provisions

U42 Token:
Technical White Paper

32/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The completeProvision method on the U42 Token smart contract also allows for the
automation of refunds for services that are multi part (e.g., greater than 1 credit in value).
If the completeProvision method is called with a value of credits remaining that is not
0, the smart contract will automatically refund the correct proportion of tokens back to
the original acquiring user.

Note that refunds may also be implemented directly in an application using the
underlying ERC-20 transfer method instead of updating the completion of a provision.

For applications that do use the provision update and completion mechanisms, it is
recommended that the built-in refund mechanism is used as it will prove more cost
effective	than	initiating	a	separate	transfer.

Automated Refunds

U42 Token:
Technical White Paper

33/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Similar to how applications can choose to update the progress and completion of a
provisioned service, it is also possible for an application to make transfers in tokens with
a	specific	link	to	a	provisioned	service.	This	will	be	useful	where	an	application	provides	
a proxy between separate users, e.g., content creators placing advertisements on one
another’s content.

The transferBecauseOf method is a simple wrapper around the underlying transfer
mechanism	that	additionally	logs	the	application,	service	and	provision	identifiers	to	the	
TransferBecauseOf event.

The linked transferBecauseOf and transferBecauseOfAggregate methods verify the
information	 passed	 in	 about	 the	 provision,	 service	 and	 application.	 If	 a	 specified	
provision	does	not	 link	 to	 the	specified	service	or	 the	service	 to	 the	application	 the	
method	will	fail	and	no	tokens	will	be	transferred.	This	acts	as	an	additional	verification	
step in the sending of tokens as a result of service provision.

In situations where a user is credited in tokens as a result of many provisions of the
same service (e.g., a content creator who shows advertisements alongside its content
for	many	 other	 content	 creators)	 it	may	 not	 be	 cost	 effective	 or	 desired	 to	 call	 the	
transferBecauseOf method many times. For this reason, a transferBecauseOfAggregate
method is provided by the U42 Token smart contract. This aggregate method allows an
application	to	pass	a	list	of	provision	identifiers	and	token	amounts	to	the	method.	This	
aggregate	method	only	supports	a	list	of	transfers	for	the	same	service	identifier.

Note that there is no built-in mechanism for linking the addresses used in a transfer with
a particular user or entity, other than by linking the same address used in other token
interactions. Applications that choose to use linked transfers would need to consider
how to present this mechanism to end users. Though a normal transfer of tokens
(using the underlying ERC-20 transfer method) creates a public record of that address,
it doesn’t explicitly link it to the provision of a particular service.

Linked Transfers

U42 Token:
Technical White Paper

34/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The transferToService and transferToSimpleService methods of the U42 Token smart
contract	allow	 for	an	optional	 “applicationReference”	parameter	 to	be	passed	when	
calling methods of the smart contract that transfer tokens. This is intended as an optional
reference	field	 for	application	 implementers,	and	an	alternative	means	of	 referencing	
provisioned services with (application) users over reconciling addresses.

The	application	 reference	parameter	 is	a	numeric	 identifier	 that	can	be	passed	by	a	
caller of a transfer__ method (typically a content-creating user) when transferring tokens
to	provision	a	service.	 It	 is	not	verified	by	 the	smart	contract	and	does	not	need	 to	
be unique. The expected contents of the application reference parameter should be
communicated to a user who wishes to acquire a service.

It is recommended that applications generate unique, one-time-use references for each
service and that they are provided to users within the application itself (or for example
via the API of that application to other application users) as a means to associate
service	provision	without	publishing	user-identifiable	information	to	the	smart	contract	
and underlying blockchain.

The StartProvision and CompleteSimpleService events log the contents of the
applicationReference	 parameter,	 but	 not	 as	 an	 indexed	 field	 (an	 application	 would	
have to monitor all StartProvision and CompleteSimpleService events to inspect the
applicationReference parameter).

Application
References

U42 Token:
Technical White Paper

35/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The	 U42	 Token	 provides	 1.)	 a	 split	 security	 model	 with	 role-specific	 addresses	 for	
creating application services, updating their details and receiving token funds as a result
of service consumption, and 2.) an opportunity to extend this by integrating application-
specific	smart	contracts	with	additional	operational	security	built	in.

Role-specific Addresses
The core of the split security model is as follows:

• An application is an address that calls the listService or listSimpleService methods on
the	U42	Token	smart	contract.	That	address	becomes	the	effective	administrator	for	
any created services

•		When	 creating	 a	 service,	 an	 application	 can	 specify	 a	 list	 of	 “Update”	 addresses	
that have the ability to modify the details of the service (e.g., its description and cost).
Only	 the	 application	 address	 (effective	 administrator)	 can	 change	 the	 authorized	
update addresses

•		When	creating	a	service,	an	application	can	specify	a	receipt	address	–	if	specified	
this address will be used when transferring funds inside of transferToService and
transferToSimpleService methods. The application address continues to be the
effective	 administrator	 and	 can	 change	 the	 receipt	 address	 at	 any	 time	 (including	
back to itself)

Note that where a receipt address is used for the purpose of token funds security it
is strongly recommended that the update addresses feature is also used – a receipt
address can be changed by the application address, so any expected lower privileged
updates should be done via the update address mechanism.

It is expected that an application that updates services on a regular basis (e.g., for pricing
changes) would delegate one or more update addresses such that a compromise of
a system used to update the service doesn’t also have potential access to received
funds/tokens.

The receipt address mechanism can also be used to automate actions on the receipt
of	funds	by	means	of	an	application-specific	smart	contract.	See	section	“Extending	
Receipt	Addresses”.

Delegated Security
Model

U42 Token:
Technical White Paper

36/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

A single application (application address) can create many services. Those services
all	share	the	same	application	address	and	therefore	the	same	effective	administrator.	
An application owner / controlling entity might choose to create services from several
application	 addresses	 in	 order	 to	 provide	 an	 organization-specific	 grouping	 of	
administrative functions.

In addition to the built-in and proposed multi-application solutions above, application
implementers could also choose to implement a smart contract as the interface to
application service (application) creation. If the call to the listService or listSimpleService
methods	 comes	 from	 a	 smart	 contract,	 that	 smart	 contract	 becomes	 the	 effective	
administrator	 of	 the	 application	 and	 its	 services.	 That	 application-specific	 smart	
contract can then implement bespoke measures as appropriate for the application or
its operational requirements.

Extending Funds and Transfer Receipt with Smart Contracts
The U42 Token is implemented as an Ethereum smart contract – as such it can interface
with	 other	 smart	 contracts.	 In	 addition	 to	 extending	 the	 security	model	 for	 specific	
application	requirements	(see	section	“Extending	the	Security	Model”),	the	receipt	of	
funds by applications or users could be extended by:

• Deploying a smart contract and specifying it as the receipt address of an application
service

• Deploying a smart contract and using its address as the receiver address for content-
creating (or other) users

Note that deploying a smart contract for the purpose of receiving token funds should
be designed and managed properly. The underlying ERC-20 standard manages a
ledger of token-holding addresses, so any smart contract that receives tokens must
implement methods to at least be able to withdraw those tokens.

Extending the
Security Model

U42 Token:
Technical White Paper

37/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

A receipt address may be extended (via smart contract) to provide many purposes,
examples might include:

• Locking up tokens in a multi-signature wallet

•		Managing	“hot”	and	“cold”	token	storage	(e.g.,	ensuring	a	fixed-size	hot	wallet	and	
separate cold storage mechanism)

• Making payments to service providers (for the underlying application functionality)

• Integrating directly with other application functionality (i.e., a fully integrated distributed
application could deploy a smart contract to receive funds and also to make
disbursements to content creators via transferBecauseOf)

In order to use this functionality an application must specify on creation (or later change
via changeServiceReceiptAddress) a receiptAddress for the service. So long as this
address is the address of the smart contract, no further changes are required during
the listService or listSimpleService method calls. Note that there is no means for the
U42 Token smart contract to verify that the destination address is a smart contract that
implements an appropriate withdraw function. It is strongly recommended that such
smart	contracts	are	tested	via	the	test	version	of	the	U42	Token	–	see	section	“Testing	
Applications	with	the	U42	Token”.

Note that similar functionality could be achieved by using a single deployment smart
contract that also received funds (i.e., not using the receipt address) and managed their
transfer via some other (presumably internal to that smart contract) method.

Extending Receipt
Addresses

U42 Token:
Technical White Paper

38/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Applications send tokens to users as required by their services and functionality – this
can be with the underlying ERC-20 transfer method or with the transferBecauseOf and
transferBecauseOfAggregate methods of the U42 Token smart contract. All of these
transfer methods expect an ERC-20-compatible Ethereum address, which could be a
standard user wallet or another smart contract.

A user (e.g., a content creator) who wanted to integrate a more sophisticated payment
flow	 (beyond	 “send	all	 funds	 to	 this	 address”)	 could	 implement	one	by	deploying	 a	
smart contact with the required functionality and specifying the address of that contract
as their user wallet address in a U42 Token application. For example, a content-creating
user	in	the	You42	platform	might	represent	a	group	of	artists	with	different	contributions	
to	a	piece	of	content	(first	X	goes	to	Y,	then	split	Z%	between	a	list	of	parties).	A	mechanic	
like this is an obvious use case for a smart contract, and such a smart contract could be
deployed by a user interacting with a U42 Token application without requiring additional
features or support from the application implementer or the U42 Token smart contract.

Furthermore, this facility allows a U42 Token user (or users) to implement payment
flows	and	financial	distributions	across	multiple	applications	and	services	from	different	
providers. In the case of content creation, a multi-party (e.g., multiple content creators
working together on the basis of some commercial agreement) user could conceive of a
smart contract that requires all parties to agree (and sign the smart contract) on the basis
that it provides an automated distribution of funds based on their commercial agreement.

Extending User
Transfers

U42 Token:
Technical White Paper

39/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The U42 Token smart contract uses Solidity events to make available relevant data
about the use of U42 Token smart contract methods. Applications can integrate directly
with the token by monitoring for events that are of interest to them. For example an
application can monitor for StartProvision in order to see that a service has been
acquired by a user. In another example, an application can watch for UpdateService to
see prices changed on another application’s services.

The	Token	Specification	includes	a	list	of	events	created	by	the	methods	of	the	U42	Token	
smart contract. Each contract method lists the events that are called on successful
use. Note that the transferToService, transferToSimpleService, transferBecauseOf and
transferBecauseOfAggregate methods all create ERC-20 standard Transfer events in
addition	to	the	U42	Token-specific	events	defined	in	the	Token	Specification.

Use of Logged Events

U42 Token:
Technical White Paper

40/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The U42 Token smart contract provides methods such as transferToService and
transferToSimpleService that can be called by users (e.g., content creators, other
application users) and expect information about the application and service being
provisioned. The behaviour of the smart contract is such that if a transferToService or
transferToSimpleService method is called without valid service information (e.g., the
service	identifier	doesn’t	exist,	doesn’t	match	the	application	or	has	been	removed)	then	
the method call will fail and no tokens will be transferred. This provides an additional
level of protection against human error in the use of U42 Token applications.

Note	that	the	application	reference	field	is	considered	a	data>event	logging	mechanism	
only, it does not provide a means to verify valid application references.

Protection Against
Erroneous Transfers

U42 Token:
Technical White Paper

41/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Multiple Service Use – You42 platform
Diagram 2: You42 platform provides multiple advertising services

In this example, the You42 platform provides several advertising services – those that
can	be	displayed	on	the	profiles	and	content	of	other	users	and	those	that	are	“feature”	
advertisements, e.g., displayed on the homepage of the You42 platform.

1 A user purchases an advertising product with tokens

2 That service is provisioned and advertisements are shown on the platform

3 The application keeps track of which users display those advertisements and
remunerates User 2 accordingly

4 User 2 receives tokens as a result of advertisements being shown next to their
content (including from User 1 above)

5 		User	2	uses	those	tokens	to	purchase	a	different	service	(feature	advertising)	–	they	
could also purchase the same (content advertising) service or hold the tokens

Examples of Use

U42 Token:
Technical White Paper

42/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Provision Updated Services and Linked Transfer
Diagram 3: Targeted advertising service with tracked usage

Example application provides a targeted advertising service that tracks provision of
credited advertisements via the U42 Token smart contract and on completion makes a
single set of payments to users who showed that advertisement.

1 A user purchases targeted advertising services

2 The service is provisioned and the application sets up an advertising product that
will update the U42 Token smart contract every time part of that provision is used

3 		Advertisements	are	shown	on	the	profiles	of	content	creators	and	provision	updates	
are sent to the U42 Token smart contract

4 The U42 Token smart contract updates the remaining credits for that provision

5 Once the advertisement inventory (credits) is used up the application completes the
provision and makes payments

6 The U42 Token smart contract marks the provision as complete and optionally
applies any due refund (e.g., where not all advertising credits were used up)

7 The application triggers a token transfer to each of the users that displayed the
advertisement using the U42 Token smart contract

Examples of Use

U42 Token:
Technical White Paper

43/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Dynamic Service Availability
Diagram 4: An application that updates the cost of a service and ultimately removes it

In	this	example	an	application	makes	a	service	available	at	a	specific	cost	(in	tokens/
credits) and then updates that cost over time. Ultimately the application removes the
service via the U42 Token smart contract remove method and future attempts to
provision that service fail (and no tokens are transferred).

1 Application makes a service available via the normal means (note that it can choose
to	use	update	addresses	–	see	section	“Delegated	Security	Model”)

2 A user provisions that service at the advertised rate

3 The application updates the cost of the services

4 Another user provisions the service at the new rate (note that an attempt to provision
the service with the incorrect amount of tokens will fail)

5 Ultimately the application removes the service as it is no longer available

6 When a user attempts to provision the service it will fail as it has been removed
(note also that no new services can be created for this application with the same
service	identifier)

Examples of Use

U42 Token:
Technical White Paper

44/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Simple Services
Diagram 5:	A	Simple	“UCoin	pack”	purchase	in	the	You42	platform

In	 this	 example	 a	 user	 purchases	 a	 “UCoin	pack”	 from	 the	You42	platform.	 This	 is	
presented by the application as a simple service as it has no credit mechanism and
does not require a provision start & end. The application implements something
internally	to	provide	a	flow	of	tokens	back	to	other	users.

1 Application makes the simple service available via the U42 Token smart contract

2 A user purchases a UCoin pack at its advertised rate (note that simple services can
have their information and rates changed as per the previous example)

3 The application provides an internal mechanism to credit the user’s UCoin pack
purchase

Note that the application could provide an internal mechanism to credit other users
with tokens via the standard transfer method. The application would not be able to
make a transfer that referenced the service as there is no provision information for
a simple service.

Examples of Use

U42 Token:
Technical White Paper

45/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Multiple Applications
Diagram 6:	A	user	interacts	with	different	applications

In	 this	example	a	user	 interacts	with	different	applications	 to	provision	services	and	
receive payments for its contribution to the services provided. Depending on the
requirements of the user these may change over time. The U42 Token is at the center
of the user’s service interaction.

1 		The	user	interacts	with	different	applications	and	services

2 Some applications provide services that the user requires but don’t provide services
that the user is paid to participate in

3 Some applications provide services to the user as well as providing services that
benefit	the	user,	e.g.,	advertising	alongside	content	as	per	previous	examples

4 Where applications leverage the user’s content for multiple provisions the user can
receive	tokens	as	one-off	transfers	or	aggregated	transfers

U42 Token:
Technical White Paper

Examples of Use

46/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Integrating Smart Contracts with Application Services (for Content Creators)
Diagram 7: A content creator uses a smart contract to distribute received tokens
amongst	different	parties

In this example a content creator uses a smart contract to distribute received tokens
amongst	different	contributing	parties	according	to	an	example	60/20/20	royalties	split.	
Note that the user only needs to specify the smart contract address instead of a wallet
address and that the application described does not need to be aware of the content
creator’s	specific	smart	contract	details	or	externally-agreed	royalty	distribution.

1 A content-creating user of an application pays for an advertising service with U42
Tokens

2 The application tracks which users displayed advertisements for that service and
remunerates them with U42 Tokens

3 		A	 different	 content-creating	 user	 (user	 2)	 receives	 tokens	which	 are	 sent	 to	 the	
address	specified.	 In	this	case	the	address	 is	a	smart	contract	on	the	Ethereum	
network

4 The smart contract deployed by the content creator distributes the tokens
accordingly, in this example using a 60/20/20 split between three parties

Examples of Use

U42 Token:
Technical White Paper

47/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Making Features Available Exclusively to Token Holders
Diagram 8:	A	user	receives	enhanced	features	by	confirming	that	they	hold	tokens

In this example an application makes available enhanced features to users that can
demonstrate they hold U42 Tokens. This is done without a need for transferring tokens.

1 An existing or new user receives a standard set of features in the application

2 The application makes known an enhanced set of features for users that can
confirm	they	hold	U42	Tokens

3 A user that wishes to access those enhanced features can request a reference to
be	confirmed	by	them	using	the	U42	Token	smart	contract

4 		The	 application	 sees	 the	 confirmation	 of	 the	 reference	 via	 the	 U42	 Token	
smart contract

5 The application upgrades the user’s account with enhanced features

Examples of Use

U42 Token:
Technical White Paper

48/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

The	U42	Token	specification	as	included	in	Appendix	A	of	this	document	is	published	
and updated on the You42 website. The deployed U42 Token smart contract code is
available via the linked git repository, along with related technical and deployment details.

Application Development Summary
Diagram 9: typical application development cycle

Application implementers will typically do at least:
• Application development – the development of applications that provide services

compatible with the U42 Token smart contract

•		Deployment	of	test	services	–	see	section	“Testing	Applications	with	the	U42	Token”

• Provision operational details (e.g., production addresses, processes and application-
specific	smart	contracts	if	required)

• Deployment of production services with operational details

•		Update	service	details	–	see	section	“Delegated	Security	Model”

• Develop additional application services and update existing services

Token Application
Development

U42 Token:
Technical White Paper

49/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Structure of a U42 Token Application
Diagram 10: Structure of a U42 Token application

Application implementers:
• Make services available via the U42 Token smart contract

• Monitor the network for events relating to their services

• Receive tokens sent by users to provision services

• Send tokens to users that are involved in the provision of services

U42 Token:
Technical White Paper

Token Application
Development

50/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Testing Applications with the U42 Token
For the purpose of testing U42 Token applications, developers can request tokens from
the U42 test token faucet on the Ethereum Ropsten test network. The contract address
for the token faucet is published on the You42 website.

The test token faucet smart contract acts as a custodian of test U42 tokens and is
available for application developers to obtain test tokens to be used solely on the
Ethereum	Ropsten	test	network.	It	issues	tokens	to	specified	addresses.	Note	that	a	
specific	amount	of	tokens	cannot	be	requested	and	that	the	faucet	smart	contract	may	
change the amount of tokens issued based on the use of the faucet.

requestTokens (
 address _sendToAddress
) returns bool success
Sends	test	U42	tokens	to	the	specified	address.

_sendToAddress the address to which tokens should be sent. This can be the same
address as the message sender.

Returns true on successful issue of tokens.

If there are no test tokens available the method may return false. Note that the method
is intended to be used occasionally by application developers who wish to test token
features on the test network and as such may decline repeated requests in a short
space of time.

getTokenIssueAmount (
) returns uint256 tokenIssueAmount

Returns an approximate amount of tokens issued to calls to requestTokens based on
recent usage of the test token faucet. When called before or after requestTokens the
value returned by this method should be similar to the amount of tokens transferred by
the requestTokens method.

U42 Token:
Technical White Paper

Token Application
Development

51/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

This	specification	is	intended	to	fully	implement	the	Ethereum	ERC-20	Token	Standard	
(https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md) as updated at https://
github.com/ethereum/EIPs/commit/7038c5f9b9a4845ee1bf5301c2b0ee800ec181e1.

The core ERC-20 methods name, symbol, decimals, totalSupply, balanceOf, transfer,
transferFrom, approve and allowance are implemented as described in the standard
and application implementers should be aware of their limitations and risks, especially in
regard to supported wallets and interfaces and the risks associated with sending tokens
to	non-compatible	addresses.	The	You42	Token-specific	methods	 rely	on	published	
service	specifications,	e.g.,	 transferToService,	 is	 reliant	upon	a	published	application	
service	via	listService.	This	approach	significantly	reduces	the	risk	of	erroneous	token	
transfers when using services from application implementers.

Appendix A: U42
Token Specification

U42 Token:
Technical White Paper

52/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Applications	define	an	address	 from	which	they	 interact	with	 the	smart	contract.	An	
application	could	have	many	application	addresses,	with	each	making	different	services	
available	with	different	receiving	addresses.

Applications will mange a set of (typically one for simple applications) service addresses,
from which they make services available and update their details (e.g., token/credit cost).
Service	identifiers	cannot	be	reused	once	removed	in	order	to	reduce	the	likelihood	of	
user	errors.	Each	application	address	can	specify	~4m	service	identifiers.

Applications can additionally specify receipt addresses and update addresses when
listing	services.	Receipt	addresses	allow	for	tokens	to	be	sent	to	an	address	different	
from	 that	which	 created	 (listed)	 the	 service.	Update	 addresses	 can	be	 specified	by	
the application address to allow for service changes (apart from receipt address) and
provision updates.

Application address
Used	to	list	a	service.	Is	the	effective	owner	of	the	service.	The	application	address	is	
allowed to perform the same functions as any listed update addresses, and can also
change the update addresses.

The application address is the default recipient of tokens sent to the service via transfers.
The	application	address	can	specify	a	different	receipt	address	to	receive	tokens.	Only	
the application address can update the receipt address.

Receipt address
A receipt address is intended solely to receive tokens sent to a transfer method (e.g.
transferToService, transferToSimpleService).

A receipt address can be a smart contract address that implements a withdraw function
to provide automated disbursement of tokens (e.g., via the transfer method).

Update address
Update addresses are intended to provide a lower risk interface mechanism for
application services, e.g., where updates to a service description are automated in
other systems.

Update addresses can also be used to update the completion of provisioned services.
It is anticipated that update addresses would be used alongside receipt addresses to
provide a multi-party system of application service creation, updates and disbursements
based	on	the	requirements	of	a	specific	application.

An update address can also remove a service.

Applications
& Addresses

U42 Token:
Technical White Paper

53/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

listService (
 uint256 _serviceId,
 string _serviceDescription,
 uint256 _tokensPerCredit,
 uint256 _maxCreditsPerProvision,
 address[] _updateAddresses,
 address _receiptAddress
) returns bool success
Lists a service available for this application at the sender’s address.

_serviceId	is	a	unique	numeric	identifier	for	this	service.	Must	be	>0	and	not	already	
used by this application address.
_serviceDescription is a human-readable string describing the service.
_tokensPerCredit the cost in tokens of each of the application service’s credits. Must
be	>0.
_maxCreditsPerProvision is the total number of credits available for this service. 0
indicates no limit.
_updateAddresses[] an optional (can be empty) list of addresses that are allowed to
update this service
_receiptAddress the address tokens should be credited to when a user transfers
them to a service

To	provide	a	service	with	a	fixed	cost	the	tokensPerCredit	should	be	passed	as	the	cost	
(in tokens) and maxCreditsPerProvision should be passed as 1. Note that this can also
be achieved with the listSimpleService method, but this assumes that the service is
consumed at the point of provisioning.

Fires a NewService event.

Also implemented as listService (serviceId, serviceDescription, tokensPerCredit,
maxCreditsPerProvision,	 updateAddresses)	 →	 passes	 the	 sender’s	 address	 as	 the	
receiptAddress

listSimpleService (
 uint256 _serviceId,
 string _serviceDescription,
 uint256 _tokensRequired,
 address[] _updateAddresses,
 address _receiptAddress
) returns bool success
Creates a service with no credit relationship that doesn’t return a provisionId when a
user sends tokens with transferToSimpleService.

Methods

U42 Token:
Technical White Paper

54/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

_serviceId	is	a	unique	numeric	identifier	for	this	service.	Must	be	>0	and	not	already	
used by this application address (for simple or non-simple services).
_serviceDescription is a human-readable string describing the service.
_tokensRequired	the	effective	cost	of	the	service.	Must	be	>0.
_updateAddresses[] an optional (can be empty) list of addresses that are allowed to
update this service
_receiptAddress the address tokens should be credited to when a user transfers
them to a service

This is primarily in place to ensure a low (compute) cost alternative for simple services.
Applications could still implement listService with maxCreditsPerProvision of 1 and
use the returned provisionId (and later rely on provisionStarted, provisionUpdated) by
transferToService.

Fires a NewService event.

Also implemented as listSimpleService (serviceId, serviceDescription, tokensRequires,
updateAddresses) passes the sender’s address as the receiptAddress

getServicesForApplication (
 address _applicationAddress
) returns uint32[] serviceIds
Returns	a	list	of	service	identifiers	currently	active	for	this	application	address.

_applicationAddress the address of the application for which a list of services is
required.

View function (does not modify state).

getRemovedServicesForApplication (
 address _applicationAddress
) returns uint32[] serviceIds
Returns	a	list	of	a	service	identifiers	that	have	been	removed	from	this	address.

_applicationAddress the address of the application for which a list of removed
services is required.

View function (does not modify state).

Methods

U42 Token:
Technical White Paper

55/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

getServiceInformation (
 address _applicationAddress,
 uint32 _serviceId
) returns bool isSimple, uint256 tokensPerCredit, uint256 maxCreditsPerProvision,
address[] updateAddresses, address receiptAddress
Returns information about a service.

_applicationAddress the address of the application
_serviceId	the	identifier	of	the	service.	Must	be	a	service	listed	by	the	application	and	
not removed.

View function (does not modify state).
For	 simple	 services,	 tokensPerCredit	 is	 the	 effective	 “tokensRequired”	 cost	 of	 the	
service.

updateServiceDescription (
 address _targetApplicationAddress,
 uint32 _serviceId,
 string _serviceDescription
) returns bool success
Used to update a service description.

_targetApplicationAddress the address of the application.
_serviceId	the	identifier	of	the	service	to	be	updated.	Must	be	a	valid,	non-removed	
service for this application.
_serviceDescription the new service description.

Can be called by the application address or an update address. When called by the
application address it must pass its own address for _targetApplicationAddress.

Fires the ServiceChanged event.

updateServiceTokensPerCredit (
 address _targetApplicationAddress,
 uint32 _serviceId,
 uint256 _tokensPerCredit
) returns bool success
Used to update the tokens per credit cost of a service.

Methods

U42 Token:
Technical White Paper

56/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

_targetApplicationAddress the address of the application.
_serviceId	the	identifier	of	the	service	to	be	updated.	Must	be	a	valid,	non-removed	
service for this application.
_tokensPerCredit	the	new	tokensPerCredit	value.	Must	be	>0.

Can be called by the application address or an update address. When called by the
application address it must pass its own address for _targetApplicationAddress.

Fires the ServiceChanged event.

updateServiceMaxCreditsPerProvision (
 address _targetApplicationAddress,
 uint32 _serviceId,
 uint256 _maxCreditsPerProvision
) returns bool success
Used to update the max credits per provision of a service.

_targetApplicationAddress the address of the application.
_serviceId	the	identifier	of	the	service	to	be	updated.	Must	be	a	valid,	non-removed	
service for this application.
_maxCreditsPerProvision	the	new	maxCreditsPerProvision	value.	Must	be	>0.

Can be called by the application address or an update address. When called by the
application address it must pass its own address for _targetApplicationAddress.

Fires the ServiceChanged event.

removeService (
 address _targetApplicationAddress,
 uint32 _serviceId
) returns bool success
Used	to	remove	a	service.	Removed	service	identifiers	can’t	be	reused	by	the	same	
application.

Methods

U42 Token:
Technical White Paper

57/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

_targetApplicationAddress the address of the application.
_serviceId	the	identifier	of	the	service	to	be	updated.	Must	be	a	valid,	non-removed	
service for this application.

Can be called by the application address or an update address. When called by the
application address it must pass its own address for _targetApplicationAddress.

Removed services will not return information from getServiceInformation, but they can
be listed by getRemovedServicesForApplication.

Fires the ServiceRemoved event.

changeServiceReceiptAddress (
 uint32 _serviceId,
 address _receiptAddress
) returns bool success
Change the receipt address of a service.

_serviceId	the	identifier	of	the	service	to	be	updated.	Must	be	a	valid,	non-removed	
service for this application (the message sender).
_receiptAddress the new receipt address.

If an application wishes to remove a previously set receipt address (and revert to the
default, i.e., itself) it can pass its own address to the changeServiceReceiptAddress
method.

Can only be called by application address.

Fires the ServiceChanged event.

changeServiceUpdateAddresses (
 uint32 _serviceId,
 address[] _updateAddresses
) returns bool success
Change the allowed update addresses for a service.

_serviceId	the	identifier	of	the	service	to	be	updated.	Must	be	a	valid,	non-removed	
service for this application (the message sender).
_updateAddresses the new list of authorized update addresses.

Note that the entire updateAddresses list must be updated.
Can only be called by application address.
Fires the ServiceChanged event.

Methods

U42 Token:
Technical White Paper

58/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

transferToService (
 address _applicationAddress,
 uint32 _serviceId,
 uint256 _tokenValue,
 uint256 _credits,
 uint256 _applicationReference
) returns uint256 provisionId
Used to acquire a service from an application by transferring tokens.

_applicationAddress the address of the application.
_serviceId the	service	 identifier.	Must	be	a	valid	non-removed	service	 listed	by	 that	
application.
_tokenValue the token cost of the service. Must be equal to _credits * {listed
tokensPerCredit}. Must be <= balance of tokens for message sender (user).
_credits	the	number	of	credits	of	this	service	required	by	this	user.	Must	be	>0	and	
<maxCreditsPerProvision.
_applicationReference	optional	additional	field	 to	be	used	by	an	application	when	
requesting service purchases.

Creates a provisionId (uint256) and returns it as a result. Internally tracked to include
application, service, tokensPerCredit, credits, applicationReference, user). Note that it
is up to an application to determine how to associate a token transfer with a (presumed
application) user. This could be done either with the message sender (published in
provisionStart and transfer) or with the _applicationReference parameter.

Fires StartProvision and Transfer events.

transferToSimpleService (
 address _applicationAddress,
 uint32 _serviceId,
 uint256 _tokenValue,
 uint256 _applicationReference,
 uint256 _multiple
) returns bool success
Used to acquire a simple service from an application by transferring tokens.

Methods

U42 Token:
Technical White Paper

59/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

_applicationAddress the address of the application.
_serviceId the	service	 identifier.	Must	be	a	valid	non-removed	service	 listed	by	 that	
application and created using listSimpleService.
_tokenValue the token cost of the service. Must be equal to _multiple * {listed
tokensRequired}. Must be <= balance of tokens for message sender (user).
_applicationReference	optional	additional	field	 to	be	used	by	an	application	when	
requesting service purchases.
_multiple the number of this simple service required.

Note that this does not create a provision, it is assumed that the service is consumed
at the point of use.

Note that it is up to an application to determine how to associate a token transfer with
a (presumed application) user. This could be done either with the message sender
(published in provisionStart and transfer) or with the _applicationReference parameter.

Fires a CompleteSimpleProvision and Transfer event.

Also available as transferToSimpleService (_applicationAddress, _serviceId, _tokenValue,
_applicationReference) passes 1 as _multiple

transferBecauseOf (
 address _to,
 uint256 _value,
 address _applicationAddress,
 uint32 _serviceId,
 uint256 _provisionId
) returns bool success
Transfers tokens to an address making reference to a service provision.

_to the address to send tokens to.
_value the amount of tokens to send.
_applicationAddress must be either the address of the sender, or an address
for which the sender is listed as the receiptAddress (i.e. such that a smart contract
deployed at receiptAddress can send funds on behalf of an application/service). Must
have	balance	>=_value.
_serviceId	 the	 identifier	 of	 the	 originating	 service.	 Can	 be	 0	 (indicates	 no	 linked	
provision).
_provisionId	the	identifier	of	the	associated	provision.	Can	be	0	(indicates	no	provision	
linked, or sent as a result of a simple service).

Methods

U42 Token:
Technical White Paper

60/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Note that this is an optional method for application implementers working with listed
services and acquired provisions. Tokens can also be sent with the standard transfer
method, or not at all.

This	 method	 will	 fail	 (returning	 false	 and	 not	 transferring	 tokens)	 if	 the	 specified	 _
provisionId	does	not	relate	to	the	specified	_serviceId	and/or	the	_serviceId	does	not	
relate	to	the	specified	_applicationAddress.

Fires a TransferBecauseOf event.

transferBecauseOfAggregate (
 address _to,
 uint256 _value,
 address _applicationAddress,
 uint32 _serviceId,
 unit256[] _provisionIds,
 uint256[] _tokenAmounts
) returns bool success
Transfers tokens to an address making reference to a service as a result of several
provisions. It is assumed that application implementers only use this method for
provisions of the same service.

_to the address to send tokens to.
_value the amount of tokens to send. Must be equal to sum of _tokenAmounts.
_applicationAddress must be either the address of the sender, or an address
for which the sender is listed as the receiptAddress (i.e. such that a smart contract
deployed at receiptAddress can send funds on behalf of an application/service). Must
have	balance	>=_value.
_serviceId the	 identifier	 of	 the	 originating	 service.	 Can	 be	 0	 (indicates	 no	 linked	
provision).
_provisionIds	a	list	of	the	identifiers	of	the	associate	provisions.
_tokenAmounts a list of token amounts for each provision. Length must be equal to
length of _provisionIds.

Note that this is an optional method for application implementers working with listed
services and acquired provisions. Tokens can also be sent with the standard transfer
method, or not at all.

This	 method	 will	 fail	 (returning	 false	 and	 not	 transferring	 tokens)	 if	 the	 specified	 _
provisionIds	do	not	 relate	 to	 the	specified	_serviceId	and/or	 the	_serviceId	does	not	
relate	to	the	specified	_applicationAddress.

Fires a TransferBecauseOfAggregate event.

Methods

U42 Token:
Technical White Paper

61/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

getProvisionCreditsRemaining (
 _uint256 provisionId
) returns uint256 credits
Returns number of remaining credits for provision.

_provisionId	the	identifier	of	the	provision	for	which	the	number	of	remaining	credits	
is required.

View function (does not modify state).

getProvisionService (
 _uint256 provisionId
) returns uint32 serviceId
Returns	service	identifier	for	provision.

_provisionId the	identifier	of	the	provision	for	which	the	serviceId	is	required.

View function (does not modify state).

getProvisionApplicationAddress (
 _uint256 provisionId
) returns address applicationAddress
Returns application address for provision.

_provisionId	the	identifier	of	the	provision	for	which	the	application	address	is	required.

View function (does not modify state).

updateProvision (
 address _applicationAddress,
 uint32 _serviceId,
 uint256 _provisionId
 uint256 _creditsRemaining
) returns bool success

Updates the provision with the number of credits remaining.

Methods

U42 Token:
Technical White Paper

62/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

_applicationAddress the address of the application for this provision’s service.
Sender	must	be	the	_applicationAddress	or	a	 listed	updateaddress	for	the	specified	
application/service.
_serviceId the serviceId of the provision. Must be the serviceId obtained by
getProvisionService.
_provisionId	the	identifier	of	the	provision	to	update.
_creditsRemaining	 the	number	of	credits	 remaining	 for	 this	provision.	Must	be	>0	
(completeProvision should be used when remaining credits is 0).

Can be called by application or update addresses of that application.

Fires UpdateProvision event.

completeProvision (
 address _applicationAddress,
 uint32 _serviceId,
 uint256 _provisionId
 uint256 _creditsRemaining
) returns bool success

Completes the provision. Completed provisions will not return information from
getProvision* methods. Any credits remaining will be sent back to the original acquiring
user.

_applicationAddress the address of the application for this provision’s service.
Sender	must	be	the	_applicationAddress	or	a	listed	updateAddress	for	the	specified	
application/service.
_serviceId the serviceId of the provision. Must be the serviceId obtained by
getProvisionService.
_provisionId the	identifier	of	the	provision	to	update.
_creditsRemaining	the	number	of	credits	remaining	for	this	provision.	Must	be	>=0.	
If	>0,	creditsRemaining	*	tokensPerCredit	(at	time	of	provision)	will	be	credited	back	to	
original user (as per transferToService).

Can be called by application or update addresses of that application address.

Note that completeProvision cannot be called for simple services.

Fires CompleteProvision event.

Methods

U42 Token:
Technical White Paper

63/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

confirmReference (
 address _applicationAddress
 uint256 _applicationReference,
 uint256 _senderTokensGreaterThan
) returns bool success
Used	to	confirm	an	application	reference	with	a	minimum	number	of	held	tokens.	Does	
not transfer tokens.

_applicationReference a reference supplied to the caller by an application.
_applicationAddress the address of the application that this reference relates to.
_senderTokensGreaterThan	 the	 number	 of	 held	 tokens	 in	 order	 to	 confirm	 the	
reference.

Verifies	 that	 the	 sender	 of	 the	message	 has	more	 than	 _senderTokensGreaterThan	
token balance. Used to verify application references without transferring tokens.

Note	that	specifying	0	as	the	_senderTokensGreaterThan	simply	verifies	that	the	sender	
holds any number of tokens.

Is considered unsuccessful and returns false if the sender does not have greater than
_senderTokensGreaterThan tokens.

Fires	the	ReferenceConfirmed	event	when	successful.

name (
) returns string {Token Name}
View	function.	Returns	the	name	of	the	token,	e.g.,	“You42	Token”	for	main	net.	As	per	
ERC-20 standard.

symbol (
) returns string {Token Symbol}
View	function.	Returns	the	symbol	of	the	token,	e.g.,	“Y42”	for	main	net.

decimals (
) returns uint8 {Decimal precision}
View function. Returns the decimal precision of the token, e.g., 8. As per ERC-20
standard.

totalSupply (
) returns uint256 {Total supply}
View function. Returns total supply of token. As per ERC-20 standard.

Methods

U42 Token:
Technical White Paper

64/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

balanceOf (
 address _owner
) returns uint256 balance
View function. Returns balance of account for owner. As per ERC-20 standard.

_owner address of account to query balance of.

transfer (
 address _to,
 uint256 _value
) returns bool success
Transfers tokens to address from message sender. As per ERC-20 standard.

_to address to transfer tokens to.
_value amount of tokens to be transferred. Must be <= balance of tokens for sender.
Accepts 0 as per standard.

Fires Transfer event.

transferFrom (
 address _from,
 address _to,
 uint256 _value
) returns bool success
Transfers tokens from one address to another. As per ERC-20 standard. To be
implemented for compatibility with base standard, not intended for use in
normal You42 application/service scenarios.

_from address to transfer tokens from. Message sender must be approved via approve.
_to address to transfer tokens to.
_value amount of tokens to transfer. Must be <= balance of tokens from _from address.

Fires Transfer event.

approve (
 address _spender,
 uint256 _value
) returns bool success
Authorizes addresses to transfer tokens for other addresses. As per ERC-20 standard.
To be implemented for compatibility with base standard, not intended for use
in normal You42 application/service scenarios.

Methods

U42 Token:
Technical White Paper

65/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

_spender address to authorize for transfer from this address.
_value total amount to allow for transfer.

Fires Approval event.

allowance (
 address _owner,
 address _spender
) returns uint256 remaining

View function. Returns amount one address is authorized to spend for another. As per
ERC-20 standard. To be implemented for compatibility with base standard, not
intended for use in normal You42 application/service scenarios.

_owner address _spender is authorized to spend from.
_spender address authorized.

Methods

U42 Token:
Technical White Paper

66/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Transfer (
 address indexed _from,
 address indexed _to,
 uint256 _value
)
As	per	ERC-20	standard.	Also	fired	from	service	transfers.

Approval (
 address indexed _owner,
 address indexed _spender,
 uint256 _value
)
As	per	ERC-20	standard.	Also	fired	from	service	transfers.

NewService (
 address indexed _applicationAddress,
 uint32 _serviceId
)
Indicates a new service for application address. Can be used to get service information
from get* methods.

ServiceChanged (
 address indexed _applicationAddress,
 uint32 indexes _serviceId
)
Indicates a change to a service. Triggered for change* and update* events. Can be
used to get service information from get* methods.

ServiceRemoved (
 address indexed _applicationAddress,
 uint32 indexes _serviceId
)
Indicates removal of a service.

Events

U42 Token:
Technical White Paper

67/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

StartProvision (
 address indexed _applicationAddress,
 uint32 indexed _serviceId,
 address indexed _userAddress,
 uint256 _serviceCredits,
 uint256 _tokensPerCredit,
 uint256 _provisionId,
 uint256 _applicationReference
)
Indicates	start	of	a	service	provision.	Not	fired	for	simple	services.

UpdateProvision (
 address indexed _applicationAddress,
 uint32 indexed _serviceId,
 uint256 indexed _provisionId,
 uint256 _creditsUsed
)
Indicates update of service credit usage. Not all applications will update provisions. Not
fired	for	simple	services.

CompleteProvision (
 address indexed _applicationAddress,
 uint32 indexed _serviceId,
 uint256 indexed _provisionId,
 uint256 _creditsUsed
)
Indicates	completion	of	provision	and	final	update	of	service	credit	usage.	Not	fired	for	
simple services.

CompleteSimpleProvision (
 address indexed _applciationAddress,
 uint32 indexed _serviceId,
 address indexed _userAddress,
 uint32 _multiple,
 uint256 _applicationReference
)
Indicates start and completion of a simple service. Note that there’s no provisionId for
simple services.

Events

U42 Token:
Technical White Paper

68/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

TransferBecauseOf (
 address indexed _to,
 address indexed _forApplicationAddress,
 uint256 indexed _provisionId,
 address _from,
 uint32 _serviceId,
 uint256 _value
)
Transfer	associated	with	a	specific	provision.	Indexed	field	count	is	at	3	as	per	Solidity	
limitation. Note that there is no expectation that an application uses transferBecauseOf
vs transfer vs not crediting transfer balances at all.

TransferBecauseOfAggregate (
 address indexed _to,
 address indexed _forApplicationAddress,
 uint32 indexed _serviceId,
 address _from,
 uint256 _value,
 uint256[] _provisionIds,
 uint256[] _tokenAmounts
)
Transfer	 associated	 with	 an	 aggregate	 provision.	 Indexed	 field	 count	 is	 at	 3	 as	
per Solidity limitation. Note that there is no expectation that an application uses
transferBecauseOfAggregate or transferBecauseOf vs transfer vs not crediting transfer
balances at all.

ReferenceConfirmed (
 address indexed _applicationAddress
 uint256 indexed _applicationReference,
	 address	indexes	_confirmedBy,
 uint256 _senderTokensGreaterThan
)
Indicates	the	_applicationReference	for	_applicationAddress	application	was	confirmed	
by	address	_confirmedBy	 that	held	more	 than	_senderTokensGreaterThan	 tokens	at	
the	time	of	the	confirmation.

Events

U42 Token:
Technical White Paper

69/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

Development and test
For the purposes of testing and token development during the launch of the You42
platform, the token will be deployed to the Ropsten test network with the following
parameters.	Note	 that	 these	have	been	chosen	 to	be	deliberately	different	 from	 the	
public test and main network token as they are only for development purposes. A
public test faucet will not be provided for this test token.

• Token Name: “Dev	54	Token”
• Token symbol: “D54”
• Token supply: (same as for main network)
• Decimal precision: (same as for main network)

Public test
For testing integrated services with the U42 Token, a version of the implemented U42
Token smart contract will be deployed to the Ropsten test network with the following
parameters. See Testing Applications with the U42 Token for a description of the test
faucet available to application developers to request test tokens to be used for testing
applications with the U42 Token smart contact.

• Token Name: “U42	Test	Token”
• Token symbol:	“T42”
• Token supply: (same as for main network)
• Decimal precision: (same as for main network)

Main network
The U42 Token as published on the main Ethereum network.

• Token Name: “U42	Token”
• Token symbol: “U42”
• Token supply: 525,000,000
• Decimal precision: 8

Token Deployment
Parameters

U42 Token:
Technical White Paper

70/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

You42 Platform: You42 is the world’s premiere social entertainment platform designed
around an ecosystem where creators can engage with fans like never before. You42
is a web application built in HTML5 and accessible through any browser, on any
device, anywhere.

U42 Token: Issued and transacted on a public blockchain, the U42 Token is a service
token that is used to purchase advertising in a per-use or per-display model based on
a rate set by the platform at the time of purchase. The token is based on the Ethereum
ERC-20 token standard.

Creator: An individual, group of individuals or brand who creates or owns content to
share	on	their	own	You42	profile	or	page	to	generate	views,	listens,	interaction	and/or	
revenue from their audience.

User:	Any	individual	who	has	as	a	profile	on	the	You42	platform.	

Advertiser: A creator or brand who promotes a product, content, or event on the
You42 platform.

UCoin:	UCoins	are	You42’s	internal	value	exchange.	UCoin	can	be	earned	for	specific	
activities in the platform or can be purchased via the U42 token. As a user, the UCoin
can be used to access premium content or tip creators and as a creator are utilized to
buy promotional advertising.

XP: experience points are earned throughout the site for users participating: sharing,
posting,	etc.	As	users	‘level	up’	in	XP,	they	can	be	rewarded	via	the	U42	Token	upon	
hitting benchmarks.

Socialfeed: The newsfeed that runs through the center of the You42 platform allowing
users and creators to socialize, share content and hang out

Elements: Small or unique pieces of content that can be valuable to fans of a content
creator such as music stems, directors commentary or artwork concepts

Moments: Pieces of content that (mostly) users upload onto the site - includes photos
& pictures, music and videos

Definitions

U42 Token:
Technical White Paper

/ u42.io / info@u42.io / Version 1.0

©2018 You42 Inc. All rights reserved.

You42 Inc.
202 Tribble Gap Rd.
Suite 300
Cumming, GA 30040

info@u42.io

u42.io

Connect

Email

Website

©2018 You42 Inc. All rights reserved.

71/ u42.io / info@u42.io / Version 1.0

U42 Token:
White Paper

